
Last review date
2009-09-15

Reviewer
Marco Bencivenni
Enrico Fattibene

 The Bioinformatics Data Management

Table of Contents

The Bioinformatics Data Management
Introduction
Defining a Bioinformatics Namespace
Virtualizing remote I/ O on EGEE
Legacy application without remote I/ O
Free storage space on the WN

 The Bioinformatics Data Management

A transparent mechanism of attaching legacy interfaces to grid I/ O systems.

 Introduction

Bioinformatics applications need both high- throughput computing and huge data storage but they were not designed with grid computing
 in mind, and thus they perform only simple local I/ O and have no facility for attaching to grid data systems. It is necessary to find a way to
 access data through familiar interfaces without changing applications. In this chapter it is explained how grid computing could be a viable 
solution to distribute and integrate large bioinformatics databases, and to make these distributed databases usable by legacy 
bioinformatics programs. To realize this purpose the EGEE data management system has been used for managing, replicating, and 
locating large database files. Also a customized version of Parrot (a tool for attaching existing programs to remote I/ O systems through 
the filesystem interface) has been used to connect legacy applications to the EGEE data management system in order to support a 
logical name space and thus freeing users from managing physical file locations.

 Defining a Bioinformatics Namespace

The data files are registered in the EGEE replica management service (RMS) with the appropriate LFNs; and bioinformatics programs 
are registered tags in the experiment software management service (ESM) on several computing elements:

databases: lfn:// genomics_gpsa/ db/ dbname/ dbfiles

programs: genomics_gpsa_program

Jobs submitted with LFN and/ or ESM tags within the user’s submission file, will be sent according to matchmaking between these logical
 names and the free nodes hosting a physical replica.

 Virtualizing remote I/ O on EGEE

A customized version of Parrot is an adapted tool for application usage on the EGEE middleware. The main change regards the file 
namespace understood by Parrot. Code has been added for the recognition of true URLs as the LFN is:

protocol:// hostname/ path/ to/ resource

lfn:// genomics_gpsa/ db/ swissprot/ swissprot.fasta

Parrot is also able to identify LFNs among the program command line arguments, to resolve names to locations (SFNs) and to get the 
corresponding SFN from a SE as described in the picture below.

Last review date
2009-09-15

Reviewer
Marco Bencivenni
Enrico Fattibene



Parrot is also able to identify LFNs among the program command line arguments, to resolve names to locations (SFNs) and to get the 
corresponding SFN from a SE as described in the picture below.

 Legacy application without remote I/ O

Legacy bioinformatics applications have no I/ O to directly access remote databases. They obtain a remote access to biological database
 in two ways: file replication on the local computer or remote I/ O. It means that the prerequisite databases have to be downloaded from 
the remote grid and pushed to the input stream of the program. This remote access is done by an agent separate from the bioinformatics 
program. This agent is able to:

resolve grid filename(s) to locations - from LFN(s) to SFNs

get the data from the best location - with the best protocol

launch the execution of the program against these downloaded data.

 Free storage space on the WN

In case of file replication to the local storage, the agent must make sure that there is enough free space on the local storage area of the 
computing node. Indeed a biological database may be several hundred megabytes. Thus this WN must be able to store this much data 
on its local disk because bioinformatics programs need to access the whole database in a single run. This constraint of free space will be 
also enhanced in the case of a job accessing several databases, or in the case of a WN with multiple CPUs, accessing multiple 
databases at the same time, but sharing the same storage space. In the case of remote I/ O with Parrot, the data are put directly on the 
standard input stream of the program, without caching them on the local disk. In some cases of special access (seek, ...), a cache may be
 needed if the protocol is not supporting such special I/ O primitives. For large files, the remote I/ O mode has the advantage, because (i) 
in most cases it doesn't have to worry about the free local space and (ii) it is too late to do this checking of the free space when the job is 
on the worker node. Indeed, it should be done before, at least at the job scheduling time. Thus the file copy mode implies to modify both 
the information system (to record the free space on WNs) and the scheduling mechanism (to include this “free space” element when the 
matching is done between the job requirements and the available WNs) whereas the remote I/ O mode works with the current information
 system and matching workload.


